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Conserved DNAMethyltransferases: AWindow
into Fundamental Mechanisms of Epigenetic
Regulation in Bacteria
Highlights
DNA methylation is the epigenetic mark
most commonly found throughout the
living world. In bacteria, it is responsible
for a variety of functional roles, including
defense against foreign DNA, regulation
of chromosome replication and segrega-
tion, mismatch repair, and control of viru-
lence gene expression, among others.

DNA methyltransferases (MTases) are
responsible for transferring a methyl
group from an S-adenosyl-L-methionine
(AdoMet) donor to DNA. Dam, Dcm,
and CcrM are examples of bacterial
DNA MTases that have been compre-
hensively characterized for their roles in
gene regulation.

Here, we summarized the landscape of
DNA MTase conservation in bacteria
and observed that MTase conserva-
tion is more common than previously
Pedro H. Oliveira ,1,* and Gang Fang1,*

An increasing number of studies have reported that bacterial DNA methylation
has important functions beyond the roles in restriction-modification systems,
including the ability of affecting clinically relevant phenotypes such as virulence,
host colonization, sporulation, biofilm formation, among others. Although in-
sightful, such studies have a largely ad hoc nature and would benefit from a
systematic strategy enabling a joint functional characterization of bacterial
methylomes by the microbiology community. In this opinion article, we propose
that highly conserved DNA methyltransferases (MTases) represent a unique
opportunity for bacterial epigenomic studies. These MTases are rather common
in bacteria, span various taxonomic scales, and are present in multiple human
pathogens. Apart from well-characterized core DNA MTases, like those from
Vibrio cholerae, Salmonella enterica, Clostridioides difficile, or Streptococcus
pyogenes, multiple highly conserved DNA MTases are also found in numerous
human pathogens, including those belonging to the genera Burkholderia and
Acinetobacter. We discuss why and how these MTases can be prioritized to
enable a community-wide, integrative approach for functional epigenomic
studies. Ultimately, we discuss how some highly conserved DNA MTases may
emerge as promising targets for the development of novel epigenetic inhibitors
for biomedical applications.
portrayed, spanning several phyloge-
netic levels, and being present in mul-
tiple human and animal pathogens.
Information on the functional rele-
vance of these MTases is virtually
inexistent, but they are expected to
play key functional roles.

We also discuss why and how these
MTases can be prioritized to enable a
community-wide, integrative approach
for functional epigenomic studies. Ulti-
mately, we discuss how some highly
conserved DNA MTases may emerge
as promising targets for the development
of novel epigenetic inhibitors for biomed-
ical applications.
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Introduction
The information content of DNA is not limited to that contained within the primary nucleotide
sequence. Instead, significant meaning can also be conveyed through the epigenetic states of
DNA (e.g., by chemical modification such as DNA methylation). In bacteria, DNA methylation is
typically associated with restriction-modification (R-M) systems (see Glossary), which
operate as key moderators of the flow of genetic information between cells by horizontal gene
transfer (HGT) [1,2]. R-M systems typically encode a DNA methyltransferase (MTase) that
modifies particular DNA sequences in function of the presence of target recognition sites and a
restriction endonuclease (REase) that cleaves them when they are unmethylated [3] (Box 1).
Some DNA MTases, known as solitary or orphan, were also identified as apparently lacking a
cognate REase [4]. DNA methylation performed either by R-M or orphan MTases were properly
discussed in a few seminal works [5–7].

The bacterial genome has three major forms of DNA methylation: N6-methyladenine (6mA),
N4-methylcytosine (4mC), and 5-methylcytosine (5mC), with 6mA being the most prevalent
form. While 5mC may be detected with bisulfite sequencing, 6mA and 4mC events have
been challenging to map at the genome-wide scale [8], limiting the comprehensive study of
bacterial epigenomes. The study of bacterial methylomes entered a new era in 2012 when
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Box 1. Restriction-Modification Types and Key Definitions on Gene Persistence and Essentiality

Restriction-Modification (R-M) Types
The three classical types of R-M systems differ in their molecular structure, sequence recognition, cleavage position, and
cofactor requirements [6,101–103]. Type I systems are complex hetero-oligomers either comprising one DNA sequence
specificity (S), two REase and two MTase subunits with restriction and modification activities, or two MTase and one S
subunits with modification activity only. Type II systems encoded on separate genes are composed of one homodimeric
or homotetrameric REase and onemonomericMTase and inmost cases are able to operate separately and independently
from each other at least in vitro. Some type II systems, particularly types IIB, IIG, IIL, and some IIH (collectively termed IIC)
encode both restriction and modification domains within the same protein. Type III systems are heterotrimers or
heterotetramers of products of two genes, res and mod, involved in restriction and modification, respectively. Both
subunits are required for restriction, whereas Mod is sufficient to produce a modification. Finally, type IV ‘restriction
systems’, as opposed to R-M systems, are composed of one or two REases that cleave modified recognition sites.

Core Genes
Genes common to all genomes in a phylogenetically coherent group. They should contain the essential genes particular to
that group as well as some nonessential ones.

Essential Genes
Typically involved in basic cellular processes such as translation, transcription, and replication. The concept of essentiality
is not an intrinsic property of a gene, but instead a function of genetic and environmental factors. Essential genes can be
essential in one species but not another, or under a defined growth condition but not in others.

Persistent Genes
Conserved above a predefined cutoff threshold of bacterial genomes. Although somewhat arbitrary, such threshold
should take into consideration certain criteria, such as phylogenetic relatedness between organisms and gene organiza-
tion within genomes. By definition, persistent genes include core genes.

*Correspondence:
pcphco@gmail.com (P.H. Oliveira) and
fanggang@gmail.com (G. Fang).
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a new technology called single molecule real-time (SMRT) sequencing [9] enabled the de-
tection of all three major forms of bacterial DNA methylation. Since then, N2470 (as of 05/2020)
bacterial and archaeal methylomes [10,11] have been determined at a quasi-exponential pace.
Propelled by SMRT sequencing, an increasing number of studies documented the involvement
of DNA methylation in often critical aspects of cell biology. Some examples include gene
expression changes affecting cell motility [11], sporulation [12], virulence [13,14], and in
providing structural support for bacterial survival during antibiotic stress [15].

Previous bacterial epigenome studies have a largely ad hoc nature, in that most have performed
methylome mapping in one or few strains of the same species and, less frequently, across mul-
tiple species. A systematic examination of MTases across a large number of strains in a single
species was only determined in few occasions and in an even lower number of studies were
MTase mutants constructed for phenotypic and molecular characterization [11,16–19]. Such
studies are insightful as they provide a comprehensive snapshot of MTase diversity and some
have been indeed capable of linking individual MTases to specific functions in the cell. But they
face major challenges. For example, it is usually difficult for one single study to obtain sufficiently
deep mechanistic insight, or comprehensively uncover phenotypes impacted by the loss of an
MTase. It is also conceptually challenging to integrate epigenomic information stemming from dif-
ferent studies dealing with MTases present in few strains. More importantly, there have been limited
attempts to identify specific methylation sites and mechanisms, underlying the epigenetic regula-
tion of genes linked to defined phenotypes. Due to these limitations, some fundamental questions
still remain unanswered: What phenotypes (in a particular species) are impacted by DNAMTases?
Which specific methylation sites play important regulatory roles? What are the underlying epige-
netic mechanisms regulating cellular phenotypes by specific methylation events?

Among all the diversity of DNA MTases in bacteria [10,20], some are highly conserved at the
species level or at higher taxonomic ranks. Examples of well characterized ones include the
1 Trends in Microbiology, Month 2020, Vol. xx, No. xx



Glossary
DNA methyltransferase: family of
enzymes that catalyze the transfer of a
methyl group from an S-adenosyl-L-
methionine (AdoMet) donor to DNA.
Epigenome: complete record of all
chemical modifications to DNA.
Together with the epitranscriptome
(chemical modifications of RNA) and
epiproteome (chemical modifications of
proteins), makes up the epi-ome.
Methylome: complete record of all
methyl modifications to either DNA,
RNA, or proteins in a particular cell or
organism.
Restriction-modification (R-M)
systems: almost ubiquitous in
prokaryotes, these systems consist of a
DNA methyltransferase that methylates
a specific target sequence in the host
genome and a cognate restriction
endonuclease that cleaves
unmethylated or inappropriately
methylated targets from exogenous
DNA. They are thus typically regarded as
innate defense systems and, depending
on type, as molecular parasites.
Single molecule real-time (SMRT)
sequencing: third generation long-read
sequencing-by-synthesis technology,
based on the real-time imaging of
fluorescently tagged nucleotides as they
are synthesized along individual DNA
template molecules. The duration
between consecutive pulses of light
directly reflects the DNA polymerase
kinetics, including the impact caused by
DNA modification events.
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Escherichia coli Dam enzyme (methylating at 5′-GATC-3′) and the Caulobacter crescentus CcrM
enzyme (methylating at 5′-GANTC-3′). Dam and CcrM homologs are widespread in γ- and
α-Proteobacteria, respectively [21]. Both are encoded by core genes [22,23] (Box 1) and
recognized as conditionally essential for the viability of several species [19,24–26], typically
via mutation or overexpression approaches coupled to gene expression profile analyses. We
recently witnessed a surge of studies focusing on less known conserved MTases belonging to
different R-M types and operating the three major forms of DNA methylation [12,14,27–29].
Despite multiple evidence suggesting that R-M genes are frequently exchanged between species
[30,31,45], and evolve very quickly [32,33], the above-mentioned examples illustrate how certain
MTases may endure strong selective pressure for retention in genomes. Several possibilities may
account for such retention, including the involvement in epigenetic regulation of functionally relevant
genes [12,27], the ability of certain selfish R-M systems to induce postsegregational killing [7], or in
shaping gene flux and host genome composition [34]. Whether Dam, CcrM, and the few other
recent examples are merely outliers, or actually representatives of a broader set of conserved
MTases (and eventually full R-Ms), is currently not clear.

In this opinion article, we summarize the landscape of DNA MTase conservation in the bacterial
kingdom. We observed that MTase conservation is more common than previously portrayed,
spanning multiple phylogenetic levels, and being present in multiple human pathogens. We
then propose that prioritizing conserved MTases can facilitate community-wide efforts for
integrating experimental and multiple omics data (e.g., genomic, transcriptomic, epigenomic) to
more effectively address the fundamental questions laid earlier. Ultimately, we discuss how
some of these targets may emerge as promising targets for the development of novel epigenetic
inhibitors.

Conserved DNA MTases Are Abundant in Bacteria
A total of 26 582 MTases are found in 5568 complete bacterial genomes available in GenBank
(considering only species with at least ten complete genomes) (Figure 1A, Tables S1–S3 in the
supplemental information online). Type II MTases are present at the highest densities, in what is
likely a consequence of type II R-M systems’ ability to induce genetic addiction. Conversely,
types IIC and III are the least abundant. A total of 52% of the species harbor persistent MTases
(here defined as those conserved in at least 80% of each species’ genomes) (Box 1, Figure 1B,
Table S3 in the supplemental information online). The frequency of persistent MTases varies
widely among large bacterial phyla and is unrelated to the density of total MTases (Figure 1A).
For example, α-Proteobacteria harbor multiple persistent MTases, but show an overall low den-
sity of total MTases. However, phyla such as Fusobacteria and Chloroflexi are devoid of persis-
tent MTases, but are rich in other MTases (Figure 1A). In 27% of the species, more than one
persistent MTase is present (either belonging to the same or different types) (Tables S3 and S4
in the supplemental information online). A total of 36% of the species harbor MTases that are con-
sistently present across all genomes (core), the majority being of type II (Figure 1C). These core
MTases represent 8.5% from the total MTase dataset. The human obligate pathogen Neisseria
gonorrhoeae stands out as the species harboring the most profuse arsenal of persistent/core
MTases (n = 10) spanning types I and II/IIC. Since we have only included bacterial species with
at least ten complete genomes available at GenBank, we expect our estimate on the number
and diversity of core/persistent MTases to increase in the future as more genomes get
sequenced and novel MTases are found. On top of this, there is the possibility that small
noncanonical MTases may have gone unnoticed, as recently pinpointed in a large-scale analysis
in human microbiomes [35]. Certain core/persistent MTase genes may also undergo structural
variations (e.g., at the level of the target recognition domain) capable of changing their recognition
motif or rendering their products inactive in some genomes, while still being subtle enough to be
Trends in Microbiology, Month 2020, Vol. xx, No. xx 2
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Figure 1. Summary of Methyltransferase (MTase) Conservation in Bacterial Genomes from GenBank. (A) Phylogenetic tree of the 139 bacterial species
(colored by phylum), for which at least ten complete genomes were available at GenBank (corresponding to a total of 5568 genomes). Heatmap corresponds to the
density (per genome per Mb) of types I, II, III MTases and type IIC restriction-modification (R-M) systems for each species. Bar plots indicate the percentage of the
most abundant MTase(s) found in each species, assuming as inclusion criteria a minimum of 80% similarity in amino acid sequence and less than 20% difference in
protein length. Stippled lines indicate a threshold of 80%, above which an MTase can be considered persistent. A core gene is denoted by 100%. (B) Pie-chart
summarizing the percentages of species analyzed containing either persistent non-core (n.c.) MTases, core MTases, both, or none. (C) Pie-charts showing the
breakdown of total, persistent, and core MTases per type.
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classified in the same gene family. This is the case of, for example, the persistent type II MTase
from Mycobacterium tuberculosis recognizing CTGGAG. Hence, core and persistent MTases
are abundant in bacteria.

Core and Persistent DNA MTases Differ Substantially in Their Organization and
Sequence Recognition
We next summarize the diversity of core and persistent MTases in terms of their organization
(orphan versus part of an R-M system) and target sequence recognition (see the supplemental
3 Trends in Microbiology, Month 2020, Vol. xx, No. xx
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information online). Across strains of the same species, MTases are found predominantly orga-
nized as part of complete R-M systems or as orphans, but less frequently as both (Figure 2).
This suggests that for orphan MTases, loss of the cognate REase likely occurred early in the
evolutionary history of these species. Alternatively, orphan MTases may have been acquired as
such by HGT and further kept under strong selective pressure [20]. The existence of multiple
core and persistent complete R-M systems suggests alternative roles such as gene expression
regulation or subversion of host genome integrity during infection. For example, although it is
not entirely clear if all R-M systems are active inN. gonorrhoeae, at least some of its type II REases
TrendsTrends inin MicrobiologyMicrobiology

Figure 2. Summary of the Organization and Target Recognition Motifs of Persistent Methyltransferases
(MTases) Based on the REBASE Database. Yellow circles represent solitary MTases, whereas red ones represen
complete systems. Predominant organization of 100% means that the MTase is always found either as solitary (without a
cognate endonuclease) or as part of a complete restriction-modification (R-M) system. Values below 100% indicate tha
both organizations are present, with the most predominant one highlighted. For example, type II GTWWAC-recognizing
MTases are exclusively solitary, whereas type III CACAG-recognizing MTases are exclusively found within complete R-M
systems. GATC-recognizing MTases are found as solitary in 98.9% of the species analyzed and the remaining 1.1% in
complete systems. Target recognition motifs shown are based on the REBASE database. Circle radius is proportional to
the number of species in which the MTase is present.
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are known to be released in an active way during infection of host cells and to enter the nucleus
through nuclear pores, inducing double strand breaks in DNA during mitosis [36].

Persistent MTases are also very diverse in terms of sequence recognition (Figure 2, Table S4 in
the supplemental information online). We observed a total of 48 different methylation motifs
belonging to the three major R-M types, among which 73% methylate at 6mA. These observa-
tions are expected to be conservative as they correspond solely to MTases whose recognition
sequence has been confirmed by SMRT sequencing [37]. As expected, the MTases for which
more functional studies have been published [38] (namely Dam, Dcm, CcrM) also correspond
to those most widespread across a higher number of species (Figure 2). Hence, core and persis-
tent MTases are diverse in terms of organization and target recognition sequence.

Core and Persistent DNA MTases Are Found at Multiple Taxonomic Scales
Genes can differ significantly in their taxonomic distributions, with more broadly conserved
genes having ‘housekeeping’ functions and less conserved genes being responsible for
the phenotypic differences observed between organisms. In this regard, persistent genes
can be restricted to any taxonomic level (e.g., domain-, family-, genus-, species-, or
strain-specific). Once persistent genes have been defined to identify a related group of
organisms, the biological roles performed by these genes’ products can provide insights into
functions and phenotypes that may be characteristic (and even critical) to those groups. One
example, is that of Dam MTase, conserved in a large subset of γ-Proteobacteria (Figure 3),
including the clinically relevant genera Escherichia, Salmonella, Vibrio, and Yersinia. Its
acquisition might have been the key evolutionary moment that created a new mechanism
capable of DNA strand discrimination based on the hemi-methylated state of newly replicated
DNA [39]. Such mechanism is critical for the regulation of multiple cellular processes. For
example, during DNA mismatch repair in E. coli, the MutH protein recognizes hemi-methylated
DNA and cuts the nonmethylated daughter strand, ensuring that the methylated parental strand
will be used as template for repair-associated DNA synthesis [40]. In addition, hemi-methylated
GATC sites can activate gene expression upon passage of the replication fork [41,42] and
coordinate the initiation of replication within cell cycle in E. coli [43].
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Figure 3. Illustrative Examples of Sequence Similarity Networks of Persistent Methyltransferases (MTases)
Conserved at Different Taxonomic Resolutions. See Table S5 in the supplemental information online. Each node
represents one protein. To avoid redundancy and improve visualization, only one genome per species is shown (typically
the reference/representative genome). Edges correspond to pairwise protein sequence identity N60%. Node colors
correspond to different phyla.
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Closer to the genus level conservation, we can highlight, as illustrative examples, those of
RAATTY- and GTWWAC-recognizing MTases. The former are pervasive in the genera
Acinetobacter and Campylobacter, while the latter are often found in Burkholderia. Information
on the functional relevance of these MTases is virtually inexistent, but they are expected to play
specific roles that help maintain the identity of these genera. In line with this hypothesis is the re-
cent observation that RAATTYmethylation is required for efficient transformation inCampylobac-
ter jejuni [44]. Genes mainly preserved at the species and strain level are also of interest, as they
may be involved in exclusive ecological adaptations to particular niches. One example is that of
CamA, a 6mA persistent MTase recognizing CAAAAA involved in the sporulation and biofilm
formation in Clostridioides difficile [12] (Figure 3) and also the most species-specific persistent
MTase currently known.

The acquisition of a new functional R-M system by a bacterial clone may significantly reduce its
ability of engaging in genetic exchanges with conspecific bacteria [45]. This may help carving
preferential routes of DNA exchange between its offspring (which inherited this R-M system),
favor the maintenance of cohesive population structures, and eventually give rise to a new lineage
in the population [46]. Specific lineages of important pathogens that have recently changed their
R-M repertoires and show higher sexual isolation include Burkholderia pseudomallei, E. coli,
Neisseria meningitidis, Staphylococcus aureus, and Streptococcus pneumoniae [47–50]. A
Type I R-M system for example, decreased transfer to and from a major methicillin-resistant
S. aureus lineage [51]. Hence, core and persistent MTases are found at multiple taxonomic
scales, where they are expected to play roles that help shape phylogenetic structure.

Core and Persistent MTases as an Opportunity for Integrative Studies of
Bacterial Epigenomes
Persistent genes, as orthologs shared by all (or almost all) members of an evolutionarily coherent
group, likely reflect the important functions positively selected over time [52,53]. They are also
more likely to facilitate standardization and extrapolation from well-studied bacterial strains to
newly sequenced ones using systems-level approaches, rendering possible direct comparisons
of findings from different laboratories (Figure 4). In this regard, core and persistent MTases appear
as particularly attractive targets to be prioritized in bacterial epigenomic studies, as they allow the
integration and analysis of multidimensional omics data to retrieve meaningful information from
bacterial epigenomes and to ultimately address the questions laid down in the introductory
section.

How Can Phenotypes That Are Impacted by DNA MTases Be Identified?
Our understanding of the genetic mechanisms that underlie biological processes has relied
extensively on loss-of-function approaches that reduce or ablate gene function. Through the
analysis of the phenotypes caused by such perturbations, one can elucidate the wild type func-
tion of a given gene. For example, nontargeted DNA mutagenesis approaches, such as large
scale random transposon insertion mutagenesis coupled with deep sequencing (TIS), have
become powerful tools to simultaneously assess the essentiality of genes under defined experi-
mental conditions and to rapidly connect genotype to phenotype in a wide range of bacteria
[54]. Several variants of TIS have been independently developed [55–58] and applied to a variety
of bacteria, allowing assessment of the role of certain DNAMTases as controllers of critical cellular
processes [59] and/or as conditionally essential genes [60–62]. Relevant functional information
has also been obtained by targeted mutagenesis or overexpression of DNA MTases
[11,16–19]. A comprehensive global transcriptome and functional profiling by RNA-seq offers
the opportunity to further dissect the range of differentially expressed genes in a methylation-
free strain. Integrative analyses that incorporate RNA-seq data and other omics experiments
Trends in Microbiology, Month 2020, Vol. xx, No. xx 6
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Figure 4. Overview of a Large-Scale Community-Wide Integrative Approach for Bacterial Methylome
Analyses. Core and persistent methyltransferases (MTases) can be prioritized to build a trans-omic network across
multiple laboratories merging multiple functional data gathered at different experimental conditions. The latter may build
upon MTase mutants generated by transposon insertion mutagenesis coupled with deep sequencing (TIS), site-directed
mutagenesis of methylation sites, genome-wide profiling of DNA binding proteins [chromatin immunoprecipitation (ChIP)-
seq], transcription start site (TSS) mapping, and identification of methylation-sensitive transcription factors. Multiple layers
of omics data may ultimately be commonly shared, linked to other resources (e.g., REBASE), allow for an in-depth analysis
of, for example,methylationmotif conservation, phase-variable DNAmethyltransferases, and accelerate the research of novel
epigenomic inhibitors. Abbreviations: TFBS, Transcription factor binding site.
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are also becoming prevalent. For example, pairwise integration of RNA-seq and DNAmethylation
is typically performed by the analysis of correlation between differentially expressed genes and
methylation patterns (e.g., using linear models, logistic regression, or empirical Bayes models),
or alternatively, through the identification of sets of genes that have coordinated differential
expression and methylation [63]. For an in-depth understanding of the complex relationships
between multiple omics sets, tools such as MultiDataSet [64], CNAMet [65], and SuperExactTest
7 Trends in Microbiology, Month 2020, Vol. xx, No. xx
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[67] can be used. The latter, for example, has been recently used to aid in the identification of
novel functional roles of a bacterial MTase [12].

How Can Specific Methylation Sites Playing Important Regulatory Roles Be Identified?
Another outstanding question concerns the different regulatory roles played by distinctive
subsets of methylation sites in a genome. Two approaches, based on intra- and intergenome
analyses, can be considered. The former stems from the observation of a positive correlation
between the number of methylation sites in a gene and the fold change of expression between
wild type and MTase mutants [11,59], suggesting that epigenetic regulation of expression may
be driven by multiple methylation sites, particularly in promoter regions. In this case, genomic
regions with significant high density of methylation sites should be targeted for site-directed
mutagenesis or genetic editing in order to gauge the impact of each methylation site mutation
[27,67–69]. A second orthogonal approach, inspired by phylogenetic footprinting, deduces func-
tional relevance based on the degree of conservation of orthologous methylation motifs across
multiple genomes. By comparing multiple methylomes associated with a persistent MTase, one
can distinguish between strictly conserved orthologous target methylation sites and variable
ones (e.g., harboring single nucleotide polymorphisms or indels). While the former are likely
to preferentially play housekeeping roles, at least some of the latter are expected to serve as
ON/OFF regulators through phase variation. An additional benefit of an orthogonal approach con-
ducted across a substantial number of same-species genomes, is to gain sufficient statistical
power to perform a systematic interrogation of nonmethylated motifs sites. Such an approach
has recently allowed for a more systematic detection and analysis of both highly conserved
and nonmethylated sites in methylomes associated with persistent MTases [12,70].

How Can Epigenetic Mechanisms Regulating Cellular Phenotypes by Methylation Be Identified?
Finally, we are left with the question of the mechanisms of epigenetic regulation. Here, more
comprehensive studies will be necessary to fully characterize the precise mechanisms by
which DNA methylation modulates gene expression and alters bacterial phenotypes. Such
studies would benefit from the integration of methylome information with other assays, such
as high-confidence genome-wide transcriptional landscape inference and transcription start
site calling [71,72], or mapping of transcription factor binding sites (TFBSs). Our understand-
ing of the latter, for example, has been mainly achieved by means of chromatin immunopre-
cipitation (ChIP) [73] assays eventually coupled to next-generation sequencing (ChIP-seq)
[74]. The growing number of available bacterial epigenomes has not only spurred a surge in
comparative epigenomic studies, but also calls for additional integration with fine-resolution
TFBS maps, which in bacteria is still limited to a few species, namely E. coli [75,76], Bacillus
subtilis [77], and M. tuberculosis [78]. While an alternative strategy would be to use compar-
ative genomics across a large genomic dataset to identify putative TFBSs [12], the generation
of additional CHIP-seq data would provide valuable insight and stimulate sharing across
laboratories.

Overlaying comprehensive TFBS and methylation maps becomes critical for elucidating complex
transcriptional networks and, in few cases, has allowed characterizing multiple ON/OFF
methylation-dependent phase variation systems [79–81]. The variable expression of MTases
via, for example, slipped-strand mispairing of simple sequence repeats (SSRs), may lead to
genome-wide methylation changes and to altered expression of multiple genes (commonly
termed phasevarions) [82]. In an appraisal of the potential for phase-variation in bacterial methyl-
transferases, two recent studies revealed the presence of SSRs in as much as 2% and 17.4% of
type I hsdM and type III mod genes, respectively [83,84]. Such type of systematic studies,
coupled with information provided by long-read sequencing technologies, will likely set the
Trends in Microbiology, Month 2020, Vol. xx, No. xx 8
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How can the difference between
epigenetic pathways be disentangled?
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stage for further large-scale analyses of whole bacterial phasomes and development of control-
lable toggle switches.

Another interesting point would be to test the hypothesis that the thermodynamic effect of
DNA methylation induces conformational changes to a bacterial chromosome, increasing gene
accessibility to the transcriptional machinery [85,86]. Generation of methylation-induced non-B
topologies [85,87] is likely to take place at higher methylation densities [88] and should provide
key insight on how structural changes can alter the repertoire of genes exposed to the cellular
transcriptional machinery. Techniques such as circular dichroism and chromatin conformation
capture (e.g., Hi-C) can be used to elucidate the effects of bacterial DNA methylation on DNA
conformation and, consequently, on gene expression [89,90]. Additionally, it would be worth test-
ing the extent to which non-canonical (non-B) DNA conformations contribute to the occurrence of
nonmethylated sites, particularly for those cases that cannot be explained by protein competitive
binding. Hence, all three above-mentioned questions would strongly benefit from a community-
wide analysis of core and persistent MTases.

Concluding Remarks and Future Perspectives
In this opinion article we propose that core and persistent DNA MTases should be prioritized
in community-wide integrative studies to better understand bacterial epigenomes as well as
the drivers behind MTase conservation. To illustrate this, we provided a comprehensive
summary of the MTase conservation landscape in bacteria and highlight a catalog of 145
core and persistent MTases across 139 unique species, as well as a framework to guide
future methylome analyses. These core and persistent MTases include not only well-
characterized ones, but also multiple previously unknown ones in human and animal
pathogens. These observations open a new window to more effectively study the basic
science and translational aspects of epigenetic regulation in bacteria and call for a community-
wide integrative effort using a data and knowledge sharing strategy such as the one we have
outlined (see Outstanding Questions).

Due to their indispensability in bacteria, essential MTases (which are often core) are potential
targets for the development of epigenetic inhibitors capable of, for example, enhancing the
therapeutic activity of antimicrobials. For instance, Dam inhibition reportedly weakens bacte-
rial pathogenicity in vivo, as GATC methylation controls virulence gene expression in various
organisms [91–95]. GATC methylation was also found to play a role in drug potentiation, by
curbing the therapeutic activity of the β-lactam and quinolone classes of antibiotics [15].
Indeed, Dam represents an attractive target for epigenetic inhibition of the multiple biological
processes it regulates (e.g., virulence), as it lacks mammalian homologs while being con-
served in several enteric pathogens [96–98]. Unlike Dam, CcrM has been found to be essen-
tial for viability in multiple bacteria [25,99,100], thus raising the possibility that inhibitors of
methylation may be bactericidal in some cases. Although very promising, Dam, CcrM,
and other similar MTases are prevalent across multiple bacterial species. From the point
of view of the development of more targeted epigenetic inhibitors, other core/persistent
MTases specific to only one of few species may hold greater interest. One example is that
of the CAAAAA MTase of C. difficile, involved in the sporulation and biofilm formation in
C. difficile [12].

We should emphasize that by proposing the prioritization of core and persistent MTases in
methylome studies, we are by no means devaluing research focusing on ad hoc MTases.
Such studies should be encouraged as they provide important contributes towards the under-
standing of MTase diversity and their specific roles in, for example, the emergence/maintenance
9 Trends in Microbiology, Month 2020, Vol. xx, No. xx
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of genetic cohesion of particularly virulent lineages [47–50] and genetic regulation in their natural
(i.e., nonexperimentally perturbed) environment. Under such circumstances, recently acquired
MTases may also represent good candidates for inhibitor development.

We anticipate that in the next few years, advances in existing and forthcoming long-read
sequencing technologies, concurrently with additional progress in the understanding of multiple
functional roles of core/persistent MTases, will offer unprecedented opportunities for achieving
a more complete snapshot of bacterial methylomes, especially in human pathogens. These cur-
rent and future advances make the present times an exciting period for studying and harnessing
bacteria epigenomics for medical and clinical impact.
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